Potential use of engineered nanoparticles in ocean fertilization for large-scale atmospheric carbon dioxide removal
Michael F. Hochella Jr.
报告人简介
Michael F.Hochella Jr.现为美国弗吉尼亚理工大学(Virginia Tech)荣誉教授,“纳米地球”中心主任,美国西北太平洋国家实验室能源与环境理事会研究员,是纳米地球科学领域的权威学者。他在Science、PNAS、Nature Nanotechnology、 Elements 、Geochimica et Cosmochimica Acta 、Environmental Science & Technology等刊物发表论文200余篇,总被引超23000次,H指数82,累计获得科研经费超2500万美金。鉴于他在地球科学及相关领域取得的突出贡献,他当选为Virginia Tech地球科学系“ 杰出教授 ”( Distinguished Professor),美国地质学会、美国矿物学会、美国地球物理学会、美国地球化学学会、美国科学促进会等学术组织会士。他还曾担任美国地球化学学会主席(2000- 2001)、美国矿物学会主席(2011-2012)、弗吉尼亚理工大学地球与环境纳米技术国家中心主任(2015-2019);曾获Dana奖(美国矿物学学会)、Brindley奖(黏土矿 物学会)、Clair C.Patterson奖(美国地球化学学会)等诸多学术荣誉。
内容简介
Artificial ocean fertilization (AOF) aims to safely stimulate phytoplankton growth in the ocean and enhance carbon sequestration. AOF carbon sequestration efficiency appears lower than natural ocean fertilization processes due mainly to the low bioavailability of added nutrients, along with low export rates of AOF-produced biomass to the deep ocean. Here we explore the potential application of engineered nanoparticles (ENPs) to overcome these issues. Data from 123 studies show that some ENPs may enhance phytoplankton growth at concentrations below those likely to be toxic in marine ecosystems. ENPs may also increase bloom lifetime, boost phytoplankton aggregation and carbon export, and address secondary limiting factors in AOF. Life-cycle assessment and cost analyses suggest that net CO2 capture is possible for iron, SiO2 and Al2O3 ENPs with costs of 2–5 times that of conventional AOF, whereas boosting AOF efficiency by ENPs should substantially enhance net CO2 capture and reduce these costs. Therefore, ENP-based AOF can be an important component of the mitigation strategy to limit global warming.